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Drought timing and local climate determine the sensitivity of
eastern temperate forests to drought
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Abstract

Projected changes in temperature and drought regime are likely to reduce carbon

(C) storage in forests, thereby amplifying rates of climate change. While such reduc-

tions are often presumed to be greatest in semi-arid forests that experience wide-

spread tree mortality, the consequences of drought may also be important in

temperate mesic forests of Eastern North America (ENA) if tree growth is signifi-

cantly curtailed by drought. Investigations of the environmental conditions that

determine drought sensitivity are critically needed to accurately predict ecosystem

feedbacks to climate change. We matched site factors with the growth responses to
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drought of 10,753 trees across mesic forests of ENA, representing 24 species and

346 stands, to determine the broad-scale drivers of drought sensitivity for the domi-

nant trees in ENA. Here we show that two factors—the timing of drought, and the

atmospheric demand for water (i.e., local potential evapotranspiration; PET)—are

stronger drivers of drought sensitivity than soil and stand characteristics. Drought-

induced reductions in tree growth were greatest when the droughts occurred during

early-season peaks in radial growth, especially for trees growing in the warmest,

driest regions (i.e., highest PET). Further, mean species trait values (rooting depth

and w50) were poor predictors of drought sensitivity, as intraspecific variation in

sensitivity was equal to or greater than interspecific variation in 17 of 24 species.

From a general circulation model ensemble, we find that future increases in early-

season PET may exacerbate these effects, and potentially offset gains in C uptake

and storage in ENA owing to other global change factors.
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1 | INTRODUCTION

Climate models project significant increases in the intensity and fre-

quency of droughts—defined as periods of anomalously low water

availability—for large land areas on earth during the 21st century

(Cook, Ault, & Smerdon, 2015; Dai, 2011). Such changes are likely to

be consequential for all forest ecosystems, including temperate

mesic forests in Eastern North America (ENA; Dewes, Rangwala,

Barsugli, Hobbins, & Kumar, 2017). Unlike western forests of the

United States, droughts and drought-induced disturbances in ENA

have not recently resulted in widespread mortality (Clark et al.,

2016). However, tree growth may be substantially reduced by

drought, resulting in large reductions in ecosystem C storage

(Brzostek et al., 2014). Given that forests in ENA sequester up to

40% of eastern US carbon (C) emissions annually (Pan et al., 2011a;

Xiao et al., 2011), drought-induced reductions in growth have the

potential to be consequential for climate, and offset regional gains in

C sequestration owing to longer growing seasons (Dragoni et al.,

2011), land use change (Houghton, Hackler, & Lawrence, 1999), ris-

ing atmospheric CO2 (Norby et al., 2005) and nitrogen fertilization

(Ib�a~nez, Zak, Burton, & Pregitzer, 2018; Thomas, Canham, Weathers,

& Goodale, 2010).

Predicting how forests differ in their sensitivity to drought (in

terms of growth reduction) is critically important to predicting cli-

mate-C cycle feedbacks. While forest sensitivity depends in part on

the identity of the dominant tree species and associated hydraulic

traits (Br�eda, Huc, Granier, & Dreyer, 2006; Clark et al., 2016),

research is increasingly showing that trait effects vary with local

conditions (Anderegg, 2015). Thus, models predicting forest

sensitivity to drought should also consider local adaptation of trees

to factors such as precipitation and evaporative demand (McDowell

& Allen, 2015; Williams et al., 2013), competition (D’Amato, Brad-

ford, Fraver, & Palik, 2013), soil characteristics and microtopography

(Buckland, Grime, Hodgson, & Thompson, 1997; Jung et al., 2014;

West et al., 2012). Further, functional processes related to C alloca-

tion such as radial growth are typically less studied than hydraulic

traits that control C assimilation rates through leaf-level gas

exchanges during drought. Yet, the highly seasonal nature of C allo-

cation to growth (i.e., wood cell division and differentiation), and its

sensitivity to water availability (Foster, Schmalzer, & Fox, 2014; Gru-

ber, Strobl, Veit, & Oberhuber, 2010; Lempereur et al., 2015), sug-

gest that the timing of drought may also have a decisive influence

on the drought sensitivity of temperate forests.

Given emerging interest in modeling plant responses to changing

conditions (van Bodegom, Douma, & Verheijen, 2014; Skelton, West,

& Dawson, 2015), understanding the relative importance of environ-

mental controls on forest sensitivity to drought will improve parame-

terizations of earth system models, and reduce uncertainty about the

magnitude of climate-vegetation feedbacks (Prentice, Liang, Medlyn,

& Wang, 2015). Most of what is known about tree growth responses

to drought comes from field observations during naturally occurring

droughts (Ciais et al., 2005), from experimental water manipulations

(Beier et al., 2012; D’Orangeville, Côt�e, Houle, & Morin, 2013), or

from tree-ring research where the goal is to target specific individu-

als, species, or conditions that would enable annually resolved recon-

structions of hydroclimatic history (Cook, Meko, Stahle, &

Cleaveland, 1999). While these approaches have yielded great

insight, they typically include only a handful of tree species across a
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limited range of sites. Consequently, empirical data on drought sensi-

tivity (i.e., radial growth) from a larger number of species and loca-

tions spanning a larger environmental gradient across ENA is

required to better assess the environmental control over assimilated

C conversion into wood in times of water deficits.

Here, we tested the hypothesis that broad-scale tree sensitivity

to drought varies with local environment (soil, tree characteristics,

long-term climate), and the timing, duration and intensity of drought.

To this end, we determined the relationship between dimensionless

tree-growth indices (standardized growth) from 10,753 trees repre-

senting 24 temperate tree species, including 16 out of the 18 most

abundant tree species of northeastern United States (Landscape

Change Research Group, 2014), across 346 stands (Figure 1). Stands

had a median age (120 � 3 years, median � SE) that is similar with

the average stand age in ENA (50–120 years; Pan et al., 2011b).

2 | MATERIALS AND METHODS

2.1 | Study area

The study area spans the Eastern United States and Canada from 32°

to 50°N and from 66° to 94°W, an area dominated by temperate con-

tinental and mountain systems. Climate over this area is humid conti-

nental to humid sub-tropical, with mean annual temperatures and

precipitation for years 1970–2000 ranging between �0.3 and 16.7°C

(mean 7.0°C) and 777 and 2054 mm (mean 1,136 mm), respectively.

While temperatures decrease steadily with increasing latitude, precipi-

tation displays a longitudinal gradient, with sites closer to the Atlantic

Ocean subjected to higher precipitation than more western sites.

2.2 | Preparation of tree growth data

Of the 537 cross-dated tree-ring collections—distributed across 390

distinct locations—gathered for the study, only 157 were extracted

from the International Tree-Ring Data Bank (ITRDB), the largest

database of freely available tree-ring data. The remaining 380 tree-

ring collections were previously collected using standard den-

drochronological approaches for various research objectives, includ-

ing hydroclimatic reconstruction as well as ecological research.

Potentially suppressed trees (i.e., visually determined by researchers

as not dominant or co-dominant in the canopy) were excluded, and

tree growth data prior to 1901 was excluded due to the lack of ear-

lier accurate climate data.

In addition to climatic signals, other stand-level factors like dis-

turbances and competition as well as tree-level factors like tree age

and size make up a large component of tree-ring width variability.

For such reasons, ecological studies that use tree-ring width data

typically transform individual, raw tree-ring time series into a dimen-

sionless growth index (thereafter simply referred to as growth index)

to remove those low-frequency, nonclimatic effects and emphasize

interannual variability associated with climate and allow inter-site

comparison (Cook & Kairiukstis, 1990). Therefore, we used a

smoothing cubic spline with a frequency response cut-off at 0.50

and a wavelength of 30 years to enhance the climatic signal in tree

growth (Cook & Peters, 1997). Ring-width measurements were

transformed into dimensionless growth indices by dividing raw val-

ues with the spline function estimates (Fritts, 2001). Further, annual

growth rings are generally affected by previous-year conditions.

Since this autocorrelative structure present in tree-ring series can

blur the climatic signal and interfere with several statistical assump-

tions, autoregressive models of various orders were fitted to each

growth index, and the model that minimized the Akaike Information

Criterion (Akaike, 1974) was selected by default (Fritts, 2001).

Resulting residual series were retained. The resulting growth index

fluctuates around one, with lower values when growth is reduced

(for a comparative example of raw and standardized growth series,

see Figure S1). Such processing of raw ring-width measurements—a

standard approach in dendrochronology and dendroecology—was

completed using the package ‘DPLR’ (Bunn et al., 2014) in the R soft-

ware (R Core Team, 2017).

The statistical quality of each site-species tree-ring collection

was evaluated by computing its Expressed Population Signal (EPS), a

dendrochronology index sensitive to the sample size and the com-

mon signal among trees (Fritts, 2001). Here, we interpret high EPS

values as indicative that the associated stand is sensitive to climate,

whereas low EPS values indicate that other factors like disturbances

or competition may be blurring the common climate response.

Eighty-five (15.8% of 537) collections with EPS values less than 0.8,

or with less than eight trees, were discarded. While the removal of

climate insensitive tree-ring collections can overestimate the ecosys-

tem consequences of drought, this practice is necessary to avoid

under-estimating drought sensitivity by sampling trees whose growth

is most strongly determined by nonclimatic factors (e.g., pests and

pathogens).

The final 452 tree-ring collections are distributed across 346

locations (Figures 1 and S2), have a range of replication from 8 to

196 trees (median = 20), a mean intertree correlation ranging from
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F IGURE 1 Location of the 346 study sites across the different
ecoregions of Eastern North America. Ecoregions are areas with
similar ecosystems and environmental resources (Commission for
Environmental Cooperation, 1997)
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0.34 to 0.82 (mean = 0.59), an average EPS of 0.91 and were sam-

pled between 1971 and 2015 (median year = 2000). They represent

a total of 24 species, 10 conifers and 14 broadleaves and are com-

posed of trees 120 � 3 (median � SE) years of age. Compared to

ITRDB collections which are often 200 years-old or more, this

median age is closer to the mean age structure in the region

(50–80 years old in northeastern United States, 80–120 years old in

eastern Canada; Pan et al., 2011b). According to the U.S. Forest Ser-

vice Forest Inventory and Analysis, this study comprises 16 of the

18 most abundant tree species of northeastern United States. (Land-

scape Change Research Group, 2014). For these reasons, we con-

sider the tree-ring collection used here as highly representative of

the trees occurring in ENA temperate forests.

2.3 | Determination of historical droughts and tree
sensitivity

One-, three- and six-month values of Standardized Precipitation-Eva-

poration Index (SPEI), extracted from the Global SPEI database

(Beguer�ıa, Vicente-Serrano, Reig-Gracia, & Latorre Garc�es, 2014),

were used to estimate historical droughts at each location for the

1901–2015 period (Vicente-Serrano, 2015). SPEI estimates water

availability from both precipitation and PET (modeled from the Pen-

man–Monteith method) and converts it to standard deviations from

the historical mean and is a good estimator of low water anomalies at

various time scales (Beguer�ıa et al., 2014). In comparison with the

more commonly studied 3-month or 6-month droughts, 1-month

droughts exclude temporal autocorrelation between monthly anoma-

lies and can be used to compare the effects of drought timing on tree

growth. Further, droughts of short duration can reduce growth sub-

stantially in humid forests like the current study area (Vicente-Serrano

et al., 2013). Nonetheless, we also analyzed 3- and 6-month droughts.

Droughts were defined here as years with 1-, 3-month or 6-month

SPEI values below �1.5, equivalent to droughts with a 15-year recur-

rence interval. The threshold value of �1.5 was found to be an opti-

mal compromise between intensity and replication of drought events.

Drought sensitivity for each tree was determined as the growth

index during years with a drought event, averaged per month when

the drought was detected (from March to October). For instance,

sensitivity of an individual tree to a drought occuring in May corre-

sponded to the average growth index of that tree during all years

containing a May drought. Low correlations between monthly SPEI

values for drought years allowed us to compare drought sensitivity

between months. For instance, the average SPEI during the month

following a June drought (SPEI < �1.5) across all sites was �0.3,

�0.2 and 0.0 for 1-, 3- and 6-month SPEI, respectively.

2.4 | Phenology of radial growth

To account for latitudinal differences in the duration of the growing

season, the start of the growing season at each site was estimated

by averaging the 1980–2010 First Leaf Spring Index (USA National

Phenology Network) extracted for each US study location and

rounded to the closest first of the month to match with the monthly

scale of the SPEI values. This index predicts spatial differences in

timing of leaf out using historical observations (Ault, Schwartz, Zur-

ita-Milla, Weltzin, & Betancourt, 2015) and closely matches the lati-

tudinal gradient. Being unavailable for the 58 Canadian sites, this

information was extrapolated from site latitude using a linear regres-

sion model as this variable is an excellent predictor of leaf out

(R2 = .92, see Figure S3).

Maximal intraseasonal radial growth rates were estimated from

all published and nonpublished data that could be found across the

entire range of the temperate forest of ENA. Data were collected at

continuous to bimonthly frequencies, using electronic or manual

dendrometer bands on mostly dominant or codominant trees cover-

ing 16 of the 24 species studied here (Table 1).

2.5 | Environmental variables

Edaphic conditions (clay and sand content, terrain slope, in percent)

were included in the analysis because of their obvious control over

soil water availability. Data were extracted for US plots from the

SSURGO database using site coordinates. The SSURGO database

contains soil information collected at scales ranging from 1:12,000

to 1:63,360 by the National Cooperative Soil Survey (Soil Survey

Staff, 2016). Soil data from the SSURGO were available for 351 out

of the 452 site species.

Summer (May to July) and annual long-term PET and precipita-

tion averages (1960–1990), in mm, were computed because they can

help compare the absolute intensity of the water deficiency between

sites during a drought, while SPEI values define droughts as anoma-

lies relative to the site normal. Average monthly minimum and maxi-

mum temperatures and precipitation data were extracted for each

location from the high resolution (30 arc-second) interpolated data-

base WORLDCLIM version 1.4 (Hijmans, Cameron, Parra, Jones, & Jarvis,

2005) and used with site latitude to compute monthly PET over the

1960–1990 period with a simplified Hargreaves algorithm. Summer

PET and precipitation were summed monthly for each period and

averaged over 1960–1990.

Because resource limitation and stand developmental stage can

affect the drought susceptibility of a given tree, we calculated tree

age and relative basal area increment (bai) as indices of vigor and

successional stage during each drought event (Young et al., 2017).

Tree age was computed as the sum of tree-rings of each tree up to

the year of the drought, from the pith to the bark of the tree. We

acknowledge that this variable is probably underestimated because

increment cores sometimes fail to reach the center of the tree, or

because of missing rings due to pith decay. However, tree size mea-

surements were largely missing, precluding any approach to correct

age estimates. Relative basal area increment was estimated annually

as the annual increase in basal area (in mm2/year) divided by corre-

sponding the tree size (in mm2). Relative bai was then averaged over

the 5 years prior to each drought.

Two drought-coping traits—minimum rooting depth and vulnera-

bility to cavitation or w50—were extracted from the TRY database
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and from published data (Choat et al., 2012; Kattge et al., 2011). We

used a single mean species value for both traits (rooting depth: one

replicate per species; w50: two to eight replicates per species). While

trait data was unavailable for a subset of species, we were able to

generate trait data for 345 out of 452 site-species. Other available

traits were not retained because of their limited availability for the

species studied here.

2.6 | Statistical tests

Linear mixed models (LMM) were used to investigate how environ-

mental conditions, species and drought characteristics affect drought

sensitivity. Because 3-month droughts and 6-month drought often

contain 1-month droughts, we fitted separate models for 1-, 3- and

6-month droughts. After careful examination of data (Figure 2a), we

limited drought sensitivity to the months of May, June, July, and

August when drought sensitivity is highest across the entire study

gradient. The site-level start of the growing season was not included

in the model because of its high correlation to PET (Pearson r = .87)

and the general synchrony in drought sensitivity across the study

area (Figure 2a).

The predictor terms were site edaphic conditions (soil sand and

clay contents, slope), long-term average climate (1960–1990 mean

summer PET and precipitation), tree characteristics during the

drought (tree age and relative basal area increment), drought timing

(May, June, July or August, transformed into dummy variables using

May as the reference level), drought intensity (SPEI of drought

event) and species hydraulic traits (rooting depth and w50), while

sites crossed with species were included as random terms. Predictors

were scaled prior to analysis. Normality of model residuals was also

verified graphically. The model equation takes the form:

Yi ¼ Aþ
XNp

p¼1

Bpzp;j þ
XNq

q¼1

Bqwq;k þ
XNr

r¼1

Brxr;i þ εj þ εk þ εjk þ εi

where A is the overall intercept, p is the index for the Np site-level

variables z (i.e., PET, precipitation, sand, clay, slope, drought timing,

and severity), q is the index for the Nq species-level variables w (i.e.,

rooting depth and w50), k is the number of species, r is the index for

the Nr tree-level variables x (i.e., tree age and relative basal area

increment), i is the number of individual trees, j is the number of sites,

B are the slopes for the fixed effects, and e are the random effects.

Initially, multispecies models were fitted on data from 259 site-

species representing 13 species for which all predictor variables (no-

tably soil factors and species traits) were available. However, species

traits were found to have nonsignificant, marginal explanatory power

(p > .1, data not shown). Following this initial result, we tested for

site-specific trait effects (by including a random, site-specific effect

to each trait factor), with similar nonsignificant results. Thus, species

traits were excluded from the final models in order to increase the

number of site-species and species to 351 and 22, respectively.

To confirm the general results from the multispecies models (one

for 1-, 3- and 6-month drought) including all species and sites,
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species-specific models were fit separately on data for the eight spe-

cies with the greatest number of stands (310 out of 452 site-spe-

cies) to look for species-specific differences. Specifically, we were

interested to see if the large timing and PET effects found in multi-

species models would hold true within species. In the species-speci-

fic models, only sites were included as random terms, and species

hydraulic traits were obviously removed. All analyses were con-

ducted using the ‘LME4’ package in R Software (R Core Team, 2017).

2.7 | Future drought sensitivity

To predict how future changes in PET associated with global warm-

ing may affect drought sensitivity, baseline (1976–2005) and future

(2070–2099) PET were calculated from 20 general circulation models

for a Representative Concentration Pathways (RCP) of 8.5 W�m�2

from the NASA Earth Exchange Global Daily Downscaled Projections

(NEX-GDDP) dataset (resolution is 0.25°). Potential evapotranspira-

tion was calculated with a simplified Hargreaves algorithm using

minimum and maximum temperatures, latitude and precipitation. The

50th percentiles of the 20 model simulations per RCP were retained

to provide a reasonable estimate of future changes. Because the

Hargreaves algorithm tends to overestimate future changes in PET

(Dewes et al., 2017; Sheffield, Wood, & Roderick, 2012), and

because current PET projections contain a large amount of uncer-

tainty, we used that median projected PET increase (23 � 5%) as

the upper-limit for three scenarios of PET increases (+12%, +17%,

+23%). We used the estimates from the multispecies LMM fitted

using unscaled predictors to estimate the effects of projected PET

changes on drought-induced growth reductions while controlling for

other variables in the model (set to their median value).

3 | RESULTS

Overall drought sensitivity displayed a strong seasonal behavior.

Trees displayed the highest growth reductions when 1-month
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drought occurred in May (5.3 � 5.2%; mean � SD), June

(7.3 � 6.8%), and July (4.3 � 4.5%; Figure 2a). A similar pattern

emerges from tree responses to 3-month droughts, with the highest

growth reductions in July (9.1 � 6.9%), which also represent

droughts from May, June, and July combined. The seasonal effect of

6-month droughts is less obvious as this drought metric integrates a

longer time period, although the largest declines are observed in July

(7.6 � 6.0%) and August (7.7 � 6.0%), which also include effects

from May, June, and July droughts.

Accounting for latitudinal differences in the growing season

length (i.e., the start of the growing season ranges from March,

south, to June, north), stands with an earlier onset of the growing

season did not experience drought sensitivity earlier in the growing

season, suggesting a strong synchrony in the timing of the drought

response across forests of ENA (see Figure S4 for species-specific

results). Average 1-month drought sensitivity peaked in June for

stands where the growing season starts in March, April or May

(N = 434), with growth index reductions ranging from 15.7 � 6.7%

in sites with a growth onset in March to 6.1 � 6.7% in sites with

growth onset in May (Figure 2a). We observe even higher synchrony

with 3-month droughts, where all trees show peak drought sensitiv-

ity in July, with growth index reductions ranging from 16.8 � 6.0%

(March growth onset) to 6.9 � 9.2% (June growth onset). Six-month

drought growth reductions are also synchronized across stands with

growth onsets in March, April or May (Figure 2a). These general

trends do not exclude some species-specific variations. For instance,

the drought sensitivity of chestnut oak tends to be higher in July for

trees with later growth onsets (May). Also, sugar maple trees with

late growth onsets (May or June) appear less sensitive than those

with earlier onsets (Figure S4).

The comparison of intraseasonal radial growth rates of many

temperate species from electronic or manual dendrometer bands

reveals a remarkable synchrony in maximal growth rates, with peaks

in growth occuring around the middle of June across the range of

sites (Figure 3). Given that June also reflects peak sensitivity to

drought (Figure 2a), our results indicate that drought impacts are

most consequential when they occur during periods of peak cambial

growth, and least consequential (at least in terms of the current

year’s growth) when they occur late in the growing season. In com-

parison, sensitivity to prior-year drought was lower and associated

with late-season prior-year droughts in August, September, and

October (Figure S5). Growth reductions associated with prior-year 1-

month, 3-month or 6-month droughts ranged between 3.1 � 4.3%

and 5.4 � 4.9%.

Mixed modeling confirmed the importance of drought timing on

growth during drought, but also revealed significant effects from

PET (negative effects), sand fraction in the soil (positive effects), ter-

rain slope (negative effects), drought intensity (negative effects), tree

age (positive effects) and relative growth rate (positive effects;

Table 2). However, drought timing was the single most important

predictor of drought sensitivity. Moreover, mean species “drought-

coping traits” (rooting depth and xylem water potential at 50% cavi-

tation, w50) had marginal, nonsignificant effects on drought sensitiv-

ity, as intraspecific variation in sensitivity to 1-, 3-month or 6-month

drought was greater than interspecific variation for 17 of 24 species

(Figure 2b).

The mixed model also revealed that along with drought timing,

local long-term atmospheric demand for water (PET) was the stron-

gest predictor of drought sensitivity (Table 2). Estimated here from

local temperature and solar radiation, PET is the maximum amount

of water that would be evaporated and transpired if enough water

was available, and typically used as a proxy in conjunction with pre-

cipitation to predict the water balance of ecosystems (high

PET = high atmospheric water demand). Species found at high lati-

tudes with typically lower PET (Betula papyrifera, Thuja occidentalis,

Picea glauca, and P. mariana) tended to display lower average sensi-

tivity to drought than species commonly occurring at southern lati-

tudes (Liriodendron tulipifera, B. lenta, Quercus velutina, Carya ovata;

Figure 2b, see Figure S2 for maps of species ranges). The control

exerted by PET over growth sensitivity is also detected during non-

drought years. For instance, growth response in July to sensitivity to

SPEI in nondrought years (years when values did not fall below

�1.5) is highly correlated to PET (R = .51; data not shown).

Controlling for differences in soil, stand and species characteris-

tics, drought timing and drought intensity, average growth reductions

following 1-, 3-month or 6-month drought increase two-fold with
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PET (PET range: 286–538 mm; Figure 4) while the influence of PET

on May to August drought sensitivity increases with drought dura-

tion. Following 1-month drought, average growth decreases of

2.8 � 0.8% with every 100-mm increase in summer PET, for a total

growth variation of 7.1 � 2.0% (Table 2). Following 3-month

drought, average growth decreases of 5.6 � 0.9% with every 100-

mm increase in summer PET, for a total growth variation of

14.1 � 2.2%. Following 6-month drought, average growth decreases

of 7.6 � 1.0% with every 100-mm increase in summer PET, for a

total growth variation of 19.1 � 2.4% (Table 2). Species-specific

hierarchical mixed models also reveal significant PET effects on

drought sensitivity for six of the eight tested species (Table S1).

Given the sensitivity of tree growth in ENA to changes in PET,

an important question arises: how might predicted PET changes

influence future forest sensitivity to drought? Controlling for other

variables in our model, drought-induced growth declines could be

exacerbated by 28%–111% in 2070–2099 depending on future PET

scenarios and drought duration (Figure 5). South of 35�N, growth

declines are predicted to reach 7.6–18.5% compared to observed

reductions of 6.5–12.3%, depending on PET scenario and drought

duration. North of 45�N, although stands display historically lower

growth declines of 2.8–3.2%, they will be subjected to relatively

stronger changes, reaching 5.6–10.6% reductions depending on PET

scenarios (Figure 5). Note that these projections are for a single-

drought event, and do not account for an increase in the frequency

of drought events (i.e., SPEI < �1.5) associated with increasing PET.

4 | DISCUSSION

Using decades of climate-growth relations archived in tree-ring col-

lections, we found strong environmental controls over drought sensi-

tivity and large-scale synchronization between peak growth and

peak drought sensitivity. Our study provides an empirical comparison

of biotic and abiotic drivers of drought sensitivity over an extensive

area (ENA) for a large number of species, stands, and individuals.

The widespread sensitivity to drought observed here for 24 tree

species confirms that drought is a significant driver of tree growth in

the temperate forests of ENA (Cook, 1991; Martin-Benito & Peder-

son, 2015). This includes species and individuals that were rarely

studied from a dendrochronological perspective, although they are

significant components of the ENA ecosystem.

The finding that sensitivity to 1-, 3-month or 6-month water def-

icit is highest during the short period of cambial growth across tree

species is coherent with radial growth patterns in temperate and

boreal trees, which follow a positive exponential growing phase fol-

lowed by a decline in growth rate (Rossi et al., 2006). Conifers in

northern Europe and North America, for example, have maximum

TABLE 2 Fixed-effect estimates and standard error (SE) of the multispecies linear mixed model predicting tree growth in response to 1-, 3-
and 6-month drought

Resolution Variable

1-month drought 3-month drought 6-month drought

Estimate � SE t value
Prob
(>|t|) Estimate � SE t value

Prob
(>|t|) Estimate � SE t value

Prob
(>|t|)

Site-level Intercept 0.931 � 0.005 173.6 ≤0.001 0.966 � 0.008 122.8 ≤0.001 0.966 � 0.007 139.51 ≤0.001

Drought

timing (June)

0.002 � 0.002 1.00 ns �0.037 � 0.001 �26.34 ≤0.001 �0.023 � 0.001 �16.69 ≤0.001

Drought

timing (July)

0.003 � 0.002 1.95 ≤0.05 �0.078 � 0.001 �54.96 ≤0.001 �0.051 � 0.001 �36.79 ≤0.001

Drought

timing (August)

0.048 � 0.002 31.76 ≤0.001 �0.040 � 0.001 �27.68 ≤0.001 �0.046 � 0.001 �32.91 ≤0.001

Long-term PET �0.013 � 0.003 �3.57 ≤0.001 �0.025 � 0.004 �6.37 ≤0.001 �0.033 � 0.004 �7.91 ≤0.001

Long-term prec �0.002 � 0.002 �0.72 ns 0.001 � 0.002 0.29 ns 0.001 � 0.003 0.43 ns

Sand fraction 0.009 � 0.003 3.08 ≤0.01 0.006 � 0.003 2.01 ≤0.05 0.006 � 0.003 1.76 ns

Clay fraction 0 � 0.003 0.05 ns 0.003 � 0.003 0.88 ns 0.004 � 0.004 1.01 ns

Slope 0.003 � 0.002 1.28 ns �0.007 � 0.003 2.01 ≤0.05 �0.003 � 0.003 �0.87 ns

Drought

intensity (SPEI)

0.010 � 0.001 17.9 ≤0.001 0.014 � 0.001 27.15 ≤0.001 0.013 � 0.001 25.3 ≤0.001

Tree-level Tree age 0.014 � 0.001 16.4 ≤0.001 0.018 � 0.001 21.67 ≤0.001 0.020 � 0.001 23.36 ≤0.001

Tree relative

growth rate

0.016 � 0.001 20.7 ≤0.001 0.015 � 0.001 19.79 ≤0.001 0.019 � 0.001 23.79 ≤0.001

Predictor terms are drought timing (May, June, July or August, transformed into dummy variables using May as the reference level), long-term average

climate (1960–1990 mean summer PET and precipitation), site edaphic conditions (soil sand and clay fractions, slope), drought intensity (SPEI of drought

event; SPEI values are negative, thus positive estimates indicate negative growth responses.) and tree characteristics during the drought (tree age and

relative growth rate). After initial tests, species-level variables (w50 and rooting depth) were excluded from multispecies models due to their lack of

explanatory power and nonsignificance (p > .1) and to increase the number of species and sites included in the analysis (from 259 sites and 13 species

to 351 sites and 22 species). Predictors were scaled prior to analysis.

T-tests use Satterthwaite approximations to degrees of freedom and probability values (package ‘lmerMod’ in R).
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growth during the period of maximum day length (June 21), which

ensures xylem maturation before winter (Rossi et al., 2006). Previous

local-scale tree-ring and eddy-covariance studies also report higher

tree sensitivity to early and mid-season droughts (i.e., May and June)

in deciduous broadleaf forests (Delpierre, Berveiller, Granda, &

Dufrêne, 2016; Foster et al., 2014; Schwalm et al., 2010). The low

sensitivity to late-season drought (August and later) is probably

because radial growth is already completed, although secondary cell

wall lignification may exceed that period (Delpierre et al., 2016;

Rossi et al., 2006). Instead, late-season droughts can reduce growth

in the following year because of their potential impact on growth

drivers like carbohydrate and water reserves (Babst et al., 2012). The

degree to which the magnitude and duration of such legacy effects

vary among species and sites in the ENA is unknown and suggests

that the growth reductions estimate here may be conservative.

The large difference in resolution between trait values and envi-

ronmental factors, added to the unbalanced species representation

in our data, could explain the observed lack of significant trait

effects on drought sensitivity reported here. However, such results

may also indicate that mean species trait values have limited value

for predicting broad-scale drought impacts on tree growth, as local-

scale factors may represent too great a control on intraspecific trait

variation. The high within-species variability observed here supports

the hypothesis that the influence of drought-coping traits is subordi-

nated to the environmental context (Clark, 2016; Gazol, Camarero,

Anderegg, & Vicente-Serrano, 2017). This subordination may be

scale-dependent, as species differences are often highlighted in fine-

scale studies covering short environmental gradients (Brzostek et al.,

2014), while broad-scale studies generally report a dominant role for

environmental factors over species traits (Anderegg, 2015; Gazol

et al., 2017; Martin-Benito & Pederson, 2015). It is also possible that

trait co-variations and trade-offs yield similar functional responses

despite strong intraspecific variability in individual traits, thereby

weakening the effect of single traits on drought sensitivity. For

instance, the ring-porous wood structure of oak (Quercus) species

allows them to maintain higher hydraulic conductivity (partly thanks

to relatively more negative w50) during a drought than diffuse-porous

trees (e.g., L. tulipifera, A. rubrum) or gymnosperms (Vose et al.,

2016). The relatively high drought sensitivity reported here for oak

species (Q. alba, Q. velutina, Q. montana), however, suggests that

such hydraulic characteristics are at least partially uncoupled from

the whole plant C gain and allocation strategies. Notably, growth

reductions (i.e., high sensitivity) may be an efficient way to reallocate

C resources toward other metabolic processes like respiration,

osmoregulation or root growth and promote survival. Such explana-

tion would support our finding that trees from drier, warmer areas

are more sensitive to drought and water availability in general. In

addition, a cavitation-sensitive xylem (less negative w50) does not

necessarily imply high drought sensitivity. High sapwood area-to-leaf

area ratio or deep roots can compensate for xylem sensitivity, effec-

tively de-coupling drought responses at the plant level from tissue-

level traits (Phillips et al., 2016). Similar uncoupling between eco-

physiological measurements and whole-plant responses occur for

example between leaf-level photosynthesis and growth for temper-

ate species (Abrams, Ruffner, & Morgan, 1998). These contrasting

responses across scales might explain why a single tissue-level trait

(w50) is not a significant predictor of drought sensitivity.

The primary role of PET over soil or stand characteristics found

here using either 1-, 3-month or 6-month drought as well as multi-

species and species-specific models is in line with earlier reports of

temperature control over drought stress in southwestern US forests

(Fritts et al., 1965; Williams et al., 2013), in certain broadleaf species

of ENA (Martin-Benito & Pederson, 2015) including Quercus alba

(LeBlanc & Terrell, 2001), and with vapour pressure deficit control

on C fluxes during a drought (Novick et al., 2016). As described by

Fritts et al. in drier Arizona forests (1965), we show that the
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sensitivity to water deficit also increases toward the warm edge of

the eastern temperate forest biome.

During the severe drought of 2003 in Europe, the reduction in

GPP turned European ecosystems to net C source, canceling out the

equivalent of 4 years of C sequestration (Ciais et al., 2005). The con-

clusion that climatic factors and drought characteristics (timing,

intensity, and duration) can predict drought sensitivity across ENA

forests can help model forecasts better estimate future drought-

related vulnerabilities in this forest C sink. Current vegetation mod-

els already account for abiotic effects on growth (primarily via stom-

atal regulation), and the data presented here could offer a new

regional-scale benchmark for model predictions, allowing to test if

fine temporal scale responses predicted by models result in reliable

predictions of growth reductions at the annual time scale. This test

of vegetation models is especially important to improve the pro-

jected impacts of projected greater drought frequency (Cook et al.,

2015; Dewes et al., 2017) on C sequestration by temperate tree

species. Coupled carbon-climate Earth System Models project that

warm temperature anomalies could reduce annual GPP by 1.4%–

3.2% in mixed and broadleaf forests under global warming (Williams,

Torn, Riley, & Wehner, 2014). However, considerable sources of

uncertainty remain regarding future GPP changes. For one, the

increasing atmospheric CO2 concentration is likely to increase the

water-use efficiency of trees as has been shown with grasslands

(Roy et al., 2016), which could reduce the water losses (due to

higher PET) and limit negative growth impacts. Also, in addition to

our findings that soil texture, tree age, growth rates, and drought

intensity can affect drought sensitivity, other co-varying factors such

as disturbances, drought-induced mortality and cumulative drought

impacts may also interact with forest drought sensitivity. Finally,

general circulation models vary in their projections of the magnitude

of summertime PET change owing to uncertainty in atmospheric
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CO2 concentration levels and how PET is calculated (Dewes et al.,

2017). Nonetheless, the combination of potentially higher PET and

drought frequency could significantly offset the potential increases

in C sequestration due to changes in growing season length, CO2

levels, land-use or N deposition.
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